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FUNCTIONAL DIFFERENCE EQUATIONS AND AN EPIDEMIC MODEL

Lawrence Turyn

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

Brown University
Providence, Rhode Island 02912

ABSTRACT

We consider an epidemic model of the form S + I + S with

history on (--,0]. The well-known threshold phenomenon is

discussed in terms of the stability of a functional difference

equation, also known as the translation-invariant renewal equation.

Since the difference equation has infinite delay, the work of

other authors on finite-delay problems is extended. Also, epidemic

models with spatial effects are discussed by extension of the

results to difference equations in a Banach space.
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FUNCTIONAL DIFFERENCE EQUATIONS AND AN EPIDEMIC MODEL

Recently there has been interest in a model for the evolution

of a disease given by the equation

d 0 d
(1) S(t) = S(t) GB(6) U S(t+O)de,

where S(t) is the density of susceptible individuals and the

right hand side allows for infectious contacts at the present time

due to the past history of infections. Equation (1) is an

S -+ I model, that is, it allows only for susceptibles to become

infected. Diekmann [2,3] has considered this model and also has

allowed spatial effects. In an S - I S model, where one allows

for recovery (without immunity) of infecteds, one would add a term

CO) U S(t+O)dO to the right-hand side of equation (1).

The "threshold phenomenon" of Kermack and McKendrick is well-

known in mathematical epidemiology; see, for example, Bailey [1]

or Hoppensteadt [11]. For equation (1) the appropriate initial data

consists of the value k = SO = S(o) and the initial history

0(0) = d S(O), 0 E (-®,0]. The epidemiological model is realistic

only if S0 > 0, O0() < 0 and B(O) > 0 for 0 E (--,0], and

BC.0')C) 0. With these assumptions there always exists
lim ct; S )dean sc;

limt-0-0S0t;0 0 S). The threshold'phenomenon can

be stated as: There exists an S* such that

(a) For fixed S 0 > S, lim 0 0 (0;S0) > So.

(b) For fixed So < S, lim 0 S, (0 ;S 0 ) = S0.

p * -
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Here, limo_ 0 stands for the limit in the function space where

the initial history € comes from.

The equation (1) can be transformed into an equivalent

defn d
functional difference equation for y(t) dn S(t) by noting

that S(t) = So. y()dT. Specifically, (1) is equivalent to
0

(2) y(t) - k B(O)y(t+O)dO = (f y(t+O )d)0 B()y(t+6)de),

where we have notated k = SO so as to distinguish SO as a

parameter to be adjusted. We will show that the zero function

(O) = 0 for 0 E (--,0] is, for equation (2),

(a') uniformly asymptotically stable for k < S*

(b') unstable for k > S

(c') S* = 1/(OB(O)dO),

and then we will show how the stability results (a'), (b') for

equation (2) imply the threshold phenomenon (a), (b) for equation (1).

Thus, we will show that the threshold phenomenon is a particular

case of stability results for functional difference equations.

The greater part of the mathematical analysis of this paper

will be the discussion of a particular class of functional

difference equations which will be wide enough to obtain the result

of the threshold pehnomenon. We will consider the equation

(3) Dyt  G(t,y t )

04 r 4
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where y t is a function of 0 E (--,0] defined by Yt(0) = y(t+O)

n
and D and G(t,.) are defined on function : (--,0] -R , with

DO = 0(0) - f0 eYOA(0)(0)d0 so that D is linear and of a re-

nxn
stricted nature. Here, A(0) is IR (real nXn matrix)-valued.

The positive real number Y is assumed to be fixed and

f0IA()IdO < -, where 1j is the Euclidean norm for Rn and

the corresponding matrix norm on Rnx n  By consideration of the

spectral theory developed below it will hopefully become clear why the

special form eyeA(0), with f IA(6)IdO < -, is assumed for the

kernel of the integral term in the linear operator D.

Since (3) has infinite delay some care must be taken in the

assumptions made about the class of equations and class of solutions

to be considered. Infinite delay in retarded functional differential

equations has been considered by several authors, including Hale [S],

Hale and Kato [7], and Naito [12]. We will look for solutions yt

in the space

defn n
Cy= {: (-,0] -inI is continuous and there exists liie(0).

With D restricted to the above special form it would not be

difficult to work in the space IRn x Lp,y, where

In x Lp,¥,. where Lp,Y- eP 'OCo)jPdo <

but we will not discuss this further. Also, it should be possible to
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develop a theory for the abstract spaces of Hale-Kato type, as in

Hale and Kato [7] and Naito [12].

Note that for every 0 E CY we have (a) - > 1 defn=

defn supe<eY,3 I(O)I, and (b) the function e 0(.) is uniformly

continuous for E E (--,0]. C is a Banach space when given the

norm ' Because

ID0, < (1 + f IA(O)ldO) 101 , ,

D: C Y -Rn is a bounded linear operator.

For the general initial value problem (4) with initial data

Yo = 0 E C we allow any D: C +]Rn of the form

DO - 0(0) - f0 e'0A(0)(0)d6 with f IA(0)IdO <

and we allow any G E C IR + X Cy; JR n) for which the Frechet differential

differential D G(.,.) is bounded on all sets R+ x B, B any

bounded subset of C For any initial data E C Y for which

DO = G(0,0) there exists a unique global solution yt, i.e.,

Dyt = G(t,yt) and limt, 0 lyt- IY = 0, as can be proven using the

contraction mapping theorem.

When G 0, so that (4) is linear, there is a unique global

solution yt = Yt (O) for all initial data * satisfying Do = 0.

Defining TD(t)* - Yt' we find that TD(t) is a semi-group of
defn

bounded linear operators on the Banach space E - { Y Cy: DO - 0}

with the I*'l norm. One can show that TD(t) is generated by
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the operator A defined by AD = ." dD, = on its domain
(A D) E q€ : E Y} .

The spectral properties of TD(t) can be found by examining

the characteristic equation 0 = det A(X) = det I - f0eX+YGA(6)d)

as is made rigorous by considering the generator A D and the

particular nature of the equation Dyt = 0. Following Naito [12],

let us notate C-, = {X: Re X > -Y}. Given a linear operator B,

we say that X is in (a) the resolvent of B if (XI-B)-I  is

well-defined and bounded,(b) the spectrum of B if it is not in

the resolvent. The point spectrum of B consists of those X

for which (XI-B) has a non-trivial null-space.

Theorem 1: (i) The resolvent of AD is {X E CY: det A(X) 9 0}

(ii) The point spectrum of AD consists of

{X E CY: det L(X) = 0}, and if det A(-Y) = 0, also

X = -Y.

(iii) The spectrum of AD contains X.Y

(iv) AD has compact resolvent, i.e. (AD-XI)-I is compact for

all X for which it is a bounded linear operator on C.'

As a consequence, the generalized eigenspace
A()defnUk

= d j=I .A/((AD-AI) ) is of finite dimension,

A' denoting the null-space.

For (iv), use the compactification [-,0] = (--,0] u {-o}, the

Arzela-Ascoli Theorem, and a well-known theorem on projections

(found, for example, in Hille and Phillips [10, p. 182]).

Using the spectral properties of AD it is possible to obtain
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some, but not all, of the spectral properties of TD(t). From

Hille and Phillips [10, p. 4671 we have PG(TD(t))-{O} = exp(PO(AD)-t),

where Pa stands for the point spectrum. For the rest of the

spectrum we must study the particular equation Dyt = 0, rather

than relying only on abstract results for semi-groups.

Define the difference operator D0 : Cy -Rn by D0* = 0(0),

and denote by TD0(t) the semi-group for the difference equation

y(t) = Doyt = 0 defined on the Banach space 0 defn {0 E C: D00 = 01

with the I*'y norm. As an aside, note that ITD0(t)01Y < e- YtiIY

for all 0 E _q0 . Define the projection T 0 : 3 _q0 by

(= 0(') -WO).

Lemma 2: TD(t) = TDo (t)'Y0 + U(t) with U(t) completely continuous

on _q.

Let now 1.1 also stand for the operator norm on L(q) =

(the space of all bounded linear operators on -4). Using Lemma 2

and arguments involving the so-called "essential spectrum", one can

prove, as was done by Hale [6, p. 285] and Henry [9, p. 117] for

finite delay:

Theorem 3: Let aD = max[-Y,sup{Re A: det A(X) - 0)]. Then for

all a > aD  there exists K - K(a) such that ITD(t)I < Kea t for

all t > 0. One calls aD the order of the semi-group TD(t).

Theorem 4: For any -Y < a < 0 < aD the set

A - (A: a < Re X < 0, det A(X) - 0) has only finitely-many points.

For Theorem 4 a more specific reference is Hale [6, p. 309].
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Using knowledge of the linear problem Dyt = 0 we can discuss

the nonlinear problem (3) by obtaining the variation of constants

formula found below in Theorem S. Let X(t) be the fundamental

matrix, i.e. the solution in IR n n  of the equation DXt I for

t > 0 with initial data X0  given by Xo(O) = I, XO(O) = 0 for

0 < 0.

Theorem 5: The general solution yt E C of the inhomogeneous

equation Dyt = h(t), y0 = 0 E Cy with h(t) continuous for

t > 0 and with DO = h(0) is given by

(4) xt - X0h(t) = TD(t)(O-Xoh(O)) - 0[dsTD(t-S)X]h(s).

Let us assume now that G(t,O) = 0, D G(t,O) = 0, and that

G(t,.) depends weakly on the value of 0(0), specifically in the

sense that

(5) G(t,O ± X0 b) = G(t,O), for all 0 E C and b EIRn.

Define a new space PCy = C @ (the span of the columns of X0 )

with norm JO + X0bIy = 101y + bIA n, as in Hale and Martinez-

Amores [8]. Using estimates on X(.) and the measures dsX(.-s),

as in Hale [6, p. 303], the space PCy, the variation of constants

formula, and Gronwall's inequality, one can justify linearization

using

.4r,
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Theorem 6: Assume G E C (JR xCY1R ), G(t,O) = 0, D G(t,O) = 0,

and D G(.,.) is bounded on all sets IR+ x B, B bounded in C¥,

and that G satisfies (5). Assume that IG(t, )I < Mg([Cj Y)

where M is a positive real number and g is continuously

differentiable with g(0) = 0 = g'(O). If aD < 0 then 0 E Cy

is uniformly asymptotically stable for equation (3).

Theorem 7 (Instability): Make the same assumptions on G as in

Theorem 6. If aD > 0 then 0 E C is unstable for equation (3).

We have restricted ourselves to D of the form

DO = 0(0) - e yA(o)F(O)dO with jIA(o)dO < .
f-_00 f 000

All of the above results can be achieved when one allows point-Yr kf0

delays, i.e. for D = P(0) -. ke kAk (-rk) - eOA(0(O)d6

with 1kIAk1 + f- IA(O)IdO < ,as long as one assumes

0 < r1 < r2 < ... (or, more generally, that D is "atomic at zero").

We discuss the case with point delays in a paper currently in

preparation.

Now we can show that the threshold phenomenon for equation (1)

is equivalent to the question of the stability of equation (2).

Since equation (2) is an example of equation (3) for which G

satisfies the assumptions of Theorem 6, the stability of (2) can be

discussed by examining the stability of the linear difference

operator D(k) given by D(k)O = 0(0) - k B(0)0(0)d0, as long

as we assume that E e-IB(O)IdO < for some constant Y > 0.
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If S =i1/ B(O)dO then it is easy to see that (a) k > S*

implies aD(k) > 0, and (b) k < S* implies aD(k) < 0. Using

S(t) = 0 + v(t+B)d, where v(t) = d and v solves (2),0 -t U

along with Theorems (6), (7), we can interpret the threshold

phenomenon as a particular case of results in the stability theory

of functional difference equations: For k < S*, and thus aD(k) < 0,

it is dear that S(-) = S + O(WIy) , where 0(0) = v(6) = d S(0)

for 0(-o,0]. For k > S*, and thus aD(k) > 0, the semi-group
TD(t) has eigensolutions e t , where (0) = e is in C

for some values of X with Re X > 0. In fact, X = aD is such

a value! This latter property follows from the fact that TD(t) is

a positive operator on the ordered Banach space Cy., since A(6) > 0
aD

(--,0]. Let ' = ' , for notational convenience. For the

epidemiological problem, the initial history P satisfies

'(0) < 0, 0 E (--,0], and '() 0, so that there is non-zero

projection of ' onto the subspace ['] of Cy spanned by *.

From this, it follows that lim¢ 0S.( ;S0) < So whenever So > S*,

by using the general saddle-point theory, as in Hale [4, p. 157]

or Henry's forthcoming book, Geometric Theory of Partial Differential

Equations.

Diekmann [3] has allowed spatial effects in an S - I model

to arrive at the equation t S(t,x) = S(t,x).J B(;x, )S(t+6,0)dAdO

in some region f cR. If X is the ordered Banach space C(Q)

we can re-write this model as a functional difference equation in

the ordered Banach space C. = {O: (-®,O] - XI ' continuous and

there exists lime.e 0'()}O . If we restrict the linear operator
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D: Cy - X to the form D= -(0 0 e yeuA(e) (e)d, with the map

0- eYeA(e)0(e)d6: C y - X being completely continuous and

order-preserving, then we get all of the above results, especially

Theorems 6 and 7. From this we can get threshold results for the

spatial model that are sharper than those of Diekmann [31, without

the monotonicity assumption of Thieme [14, p. 103, p. 94].

For the S - I - S model, where infected' can recover, it

should be possible to prove the existence of periodic solutions,

via Hopf bifurcation, when the spectrum of the difference operator

D(k) given by

D(k)O = 0(0) k f 0 eYeA(e)0(e)de + f 0 .eYeC(e).(e)de

depends appropriately on the parameter k. Smith [13], among others,

has investigated the existence of periodic solutions above the

threshold.
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